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PREFACE

This Memorandum continues RAND's research into the statistical

analysis of computer simulation experiments. The overall purpose is

to find methods for efficiently extracting useful information from

time series generated by these experiments. This particular study

describes a technique for estimating the required sample size in a

simulation experiment, and provides flow charts and computer pro-

grams for incorporating the proposed technique directly into a com-

puter simulation program. Emphasis is on relieving the investigator

of the need to interact with the ongoing simulation to determine when

the desired statistical precision has been obtained.

Preceding work on this subject is described in G. S. Fishman and

P. J. Kiviat, Spectral Analysis of Time Series Generated by Simulation

Models, The RAND Corporation, RM-4393-PR, February 1965; G. S. Fishman,

Problems in the Statistical Analysis of Simulation Experiments: The

Comparison of Means and the Length of Sample Records, The RAND Corpora-

tion, RM-4880-PR, February 1966; and G. S. Fishman, Digital Computer

Simulation: The Allocation of Computer Time in Comparing Simulation

Experiments, The RAND Corporation, R-5288-1-PR, October 1967.
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SUMMARY

A method will be described for estimating and collecting the

sample size needed to evaluate "he mean of a process (with a spec-

ified level. of statistical accuracy) in a simulation experiment. A

procedure Ls also described for incorporating the determination and

collection of the sample size into a computer library routine that can

be called by the ongoing simulation program.

We present the underlying probability model that enables us to

denote the variance of the sample mean as a function of the autore-

gressive representation of the process under study. And we describe

the estimation and testing of the parameters of the autoregressive

representation in a way that can easily be "built into" a computer

program.

Several reliability criteria are discussed for use in determin-

ing sample size. Since these criteria assume that the variance of

the sample mean is known, an adjustment is necessary to account for

the substitution of an estimate for this variance. It is suggested

that Student's distribution be used as the sampling distribution,

with "equivalent degrees of freedom" determined by analogy with a

sequence of independent observations.

A bias adjustment is described that can be applied to the begin-

ning of the collected data to reduce the influence of initial condi-

tions on events in the experiment. Four examples are presented using

these techniques, and comparisons are made with known theoretical

solutions. Finally, we present the minimum variance unbiased esti-

matot of the sample mean, which turns out to be a function of the
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autoregressive coefficients. Before these results can be used in

practice, more will have to be known about their sampling properties.

In conclusion, it is noted that the use of the procedures de-

scribed here relieves the user of the task of continually interacting

with the simulation experiment to determine whether his results are

within an acceptable range.
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1. L'MTRODUCTION

In anv sim-,lation experiments, observations collected on the

process of interest are positively correlated. This means that an

observation that exceeds (falls below) the population mean of the

process tends to be followed by another observation that exceeds

(falls below) the mean. In a more limited set of simulation experi-

Ments. successive observations are negatively correlated so that an

observation exceeding (falling below) the mean tends to follow one

falling below (exceeding) il.

Esti-ating a population mean from sample data is a co~mon objec-

tive of the statistical analysis of a si-lation experiment and, =ore-

over, an esti-ate of the variance of the s3mple mean is helpful in

assessing ho representative the sampl. mean is of the population mean.

For uncorrelated observations, the sample population variance divided

by the sample size provides a convenient estimate of the variance of

the sample mean. For correlated data, the variance of the sample mean

is a function of the correlation between cbservations, a fact that -

causes considerable difficulty in estimating this variance.

Esticators that take account of the correlation to varying extents

have I-een suggested in the literature [4,61, but all require a degree

of subjective judgment regarding their adequacy. Ideally, one wants

an algorithm that can be "built into" a computer simulation program

and can objectively estimate the sample size needed to cbtain a speci-

fied confidence interval for a pupulation mean. Such a procedure would

relieve an investigator of the burden of esriatin, tte_ variance of

the sample mean from a data sample obtained from a trial nin, estimating
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the sample size necessary for the specified confidence interval, and

then collecting that many more observations in a successive simula-

tion run. An ideal program would accomplish these tasks without tak-

ing the simulation off the computer. This Memorandum describes an al-

gorithm for doing this.

Estimating the population mean and estimating the variance of

this resulting estimate are probles in statistical inference that

require an underlying probability model. Some models are more con-

venient than others, and it is natural to assume a model that yields

desirable statistical properties. For example, we may assume that

observations are independent and identically distributed if we be-

lieve that the outcome of any trial is not influenced by the outcomes

of other trials and also if the ordering of the trials does not affect

their outcomes.

If we suspect that the observations are statistically dependent

but that the dependence is strictly nonlinear, then we may assume

that the observations are uncorrelated. This model is less restric-

tive than that for the independent case, for it implies that the ob-

servations share a common mean and a connon variance; the covariance

between any two observations is zero, but no specification is made

regarding the nonlinear statistical relationship among observations.

The assumptions of independent or uncorrelated observations ap-

ply in many statistical analyses; in simulation experiments, however,

observations are often autocorretated. This means, statistically,

that an observstion is linearly dependent on preceding observations.

Since failure to acknowledge this autocorrelation can seriously impair
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the veracity of conclusions based on statistical results, a probabil-

ity model is needed to account for autocorrelation.

The commonly employed estimator of the population mean for auto-

correlated observations has the same algebraic form as that for inde-

peadent observations. In the independent case, it is statistically

unbiased and has minimum variance; in the autocorrelated case, these

properties hzld only for large samples. Nevertheless, the estimator

has much intuitive appeal and can be computed easily, two properties

that account for its common use.

The variance of the sample mean is a function of the autocorre-

lation between observations and, therefore, specification regarding

the covariance structure is necessary to make the estimation of this

variance a tractable statistical problem. The probability model of

a covariance stationary sequence provides a convenient framework with-

in which this problem and many others can be solved. It is this model

that we describe in Sec. 2.

In [4], the general properties of a covariance stationary se-

quence enable us to derive a useful estimator of the variance of the

sample mean; but, unfortunately, that estimator is difficult to build

into a simulation program. By adding 3everal mild restrictions to the

model, we may represent a present observation as a linear combination

of past observations plus a random residual uncorrelated with past

observations. This scheme is called an autoregressive representation

of the sequence, and the weights in the linear combination are called

the autoregre oive coefficients. For large sanples, it is shown that

a knowledge of the autoregressive coefficients and the variance of
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the uncorrelated residuals enables us to approximate the variance of

the sample mean closely.

While the autoregressive coefficients and the residual variance

are unknown, we can estimate then as described in Sec. 3. We then use

these to estimate the variance of the sample mean. This approach is

desirable because the estimation and testing of the coefficients, the

computation of the sample residual variance, and the estimation of

the variance of the sample mean can all be accomplished directly in a

simulation program md require no user intervention.

Section 4 discusses several criteria for determining sample size.

In some experiments we may want the confidence interval to have some

fixed absolute width around the mean. In others we may require the

width to be a fixed percentage of the mean. To account for the use

of an estimate for the variance of the sample mean, Sec. 5 introduces

the t distribution with appropriate adjustments for its use with auto-

correlated data. Initial conditions often influence the behavior of

the process under study; and it is desirable, whenever possible, to

reduce the extent of this influence. Section 6 covers this topic.

In Sec. 7, several examples with known solutions are presented

to illustrate how well the techniques work statistically. The exam-

ples include zero--, first-, and second-order autoregressive schemes

and a single-server queueing problem with independent and exponential-

ly distributed interarrival times and service times. These examples

are simulated and the estimated sample sizes compared with known theo-

retical results presented in [5].

Earlier we remarked that the conventional estimator of the mean

of an autocorrelated sequence is unbiased and minimum variance only



for large samples. it is therefore instructive to study what can be

done to derive an improved estimator of the mean for a moderate sample

size and how feasible and worthwhile it is to use the improvcd esti-

mator. Section 8 presents the minimum variance estimator and compares

it with the conventional mean estimator.

We zonclude that the algorithms suggested here can contribute

significantiy to solving the problem of determining sample size in a

simulation experiment. Because they can be used while minimally in-

volving the simulation experiment itself, they are worthy of consider-

ation, especially cince they can be easily modified to meet individ-

ual user preferences. Also, the suggestions regarding reliability

criteria, unbiasedness, minimum variance and variance reduction tech-

niques provide users with information that enables them to draw use-

ful inference about the process being studied.
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2. THE MDEL

In many simulation experiments, the process of interest appears

as a sequence of events in which the index that orders the events may

play a role in defining the relationship among events. The index may

be time; for example, the number of units waiting for service at time

t, where t assumes T different values. The index may simply denote

order; for example, the waiting tine for the tth unit to receive ser-

vice, where t assumes the values 1, ... , N.

When the set of ordered events is subject to random variation,

it is called a stochastic sequence. Let Xt be the value assumed by
tht

the t event in which the index t runs over the integers. Then we

denote the stochastic sequence by (Xt; t - 0, _ 1, ... , ±-1 or, mcre

concisely, by X. We could index the events on a finite set of non-

negative integers, but the above definition of X offers several expo-

sitional conveniences without impairing its applicability in the pres-

ent context.

Let the sequence X have mean

(2.1) P E(Xt)

and autocovariance function

(2.2) R E(Xs -)(x - "

If IL is finite and independent of the ordering index t, and Rgt is

finite and a function only of the number of intervening events s-t,

then we may write the mean and autocovariance function as
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= E(xd)
(2.3)

R s-t R t-s = E[(Xs _ t

respectively. A sequence satisfying (2.3) is called covariance, mean-

square, weakly or wide-sense stationary.

Suppose that

(2.4) 
Rt = s t

Then X is a sequence of uncorrelated events, mid conventional methods

of statistical inference apply when estimating t. In general, (2.4)

does not hold and more sophisticated inferential methods are needed.

For a sample of N observations, we comiprte the conventional sample

mean as

N

(2.5a) XN = (I/)yX t

-I-

See [1) for a more complete de3cription of covariance stationary
sequences.
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with variance

N-i

S, t=l

(2.5b)
N-i

= (11N) E (I - Jsl/N)S s •

s=1-N

We also require that

(2.6) R Rs 0.

This restriction is reasonable, for we would expect the covariance

between events iv the series to vanish as the numbet of intervening

events increases. Then one may show that

N-1

(2.7a) l R m <

s-l-N

N-i

(2.7b) lj 1 (Is/N)R =o
s=I-N

s-i-N

so chat for large N

(2.8) Var(XN) -- VN = m/N
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Condition (2.6) requires the absence of any regularly periodic com-

ponents in X. If any were present, then the autocovariance function R

would contain undamped cosine terms that would violate (2.6) and prevent

the convergence of (2.7b). The following example demonstrates the truth

of this assertion. Let Xt be defined by

(2.9) Xt -a sin bt + yt

where a is a random variable with zero mean and unit variance, b Is a

constant, and y is a covariance stationary sequence with mean v and

autocovariance function P. Moreover,

(2.10) lim P 0.

Then X has the autocovariance function

(2.11) = cos bs + Ps

and, for a sample of N observations,

N-1

(2.12) Va rOL) (/N)E ( I IsI/N) (cos bs + PS)

s=I-N

Now

N-1

cos bs sin [b(2N -l)2]/sin (b/2)

s=I-N

Cl. .. .
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N-i

F Isicos bs N sin!b(2N-i)/2]Isin(b/2) - [i - cos(Nb))/[2sin (b/2)],

s-I-N

so that

N-I

(l - IsJIN) coo bs -1 - coa (bN)]l[2N sin2 (b12)]

s-I-N

Then

(2.13) "jg Var(' = s2
-aR

so that (2.8) does not hold in this case. This result suggests that

any regularly periodic components in the process X be reovcd prior

to estimating the mean a.

The reader may wonder why (2.8) is of such great significance,

since m is an infinite sum of autocovariances. The answer is that m

can be compated from alternative formulae wherein the individual R 'ss

need not be known. As a result our emphasi-' is on the quantity m and

its estimation. The autoregressive representation, which is to be intro-

duced shortly, provides alternative formulae for ,omputing m.

Condition (2.6) implies that the correlation between two events

X and Xt goes to zero as the interval Is-ti becomes large. If wC
S t

impose the added, but mild, restriction that there exists a finite
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Interval r such that two events, X s ad Xt ara statistically indepen-

dent if is - t > r, and that E(jX t 3 < -, then it can be 3hown that

the limiting distributicn of the quan~tity uI(X - u) Is normal with

mean zero and variance m 17, pp. 215-219]. Hereafter, we assume that

N is sufficiently large for us to use this limiting result.

One of the desirable features of a covariance stationary sequence

is its connection with a sequence of uncorrelated, identically distri-

buted random variables. Using the W.,id decomposition theorem [161, one

may wrire for X t satisfying (2.3) and (2.6)"

t-S "

s=0

where 'a s=O,l,±2,... ," " is a sequence of real constants with

(2.15) as < ;

s-0

and {Y t 0, 1 1, ± 2, ... , i =} is a sequence of uncorrelated, iden-

tically distributed random variables with mean zero and variance o 2 . This

is an appealing form, for we can uow write the autocovariance of X as

(2.16) Rs 2

t=0

tFor a roncise description of the Wold decomposition theorem,

see [2, pp. 286-2881.
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so that

(2.17) R - = a . -

S=O .S-sO

This result is interesting but, since the sequence Y is seldom

observed, it is difficult to infer the a 's statistically. We nay

nevertheless benefit from (2.14). Taking z transform leads to

x~f(x-ozs ystO

A(z)Y(z)

(2.18) A(z) - E a zs

s,0

Y(z) = YSZS

Note that

(2.19) A() F as

s-O

2 2
n &A (1).
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Under fair!y mld conditions oa -A(z)] we way write'

B(z4X'(z) = Y(z)

B(z) - l/A(z)

(2.20)

8(z) a bszS.

On raking the inverse transform we have

(2.21) b Xt.s  "t

s-O

which is called the =toregressive epreentation of X. Notice that

(2.22) a - A 1B ) - al2 bs

s-0

£9

If we can estimate a and the b ss, then we can estimate =. In its

present form, (2.21) does zot enable us to estimate these quantities

by conventional athods. We have already assumed that the zeros of

A(z) = 0 do not lie on the unit circle. If we also ass-uae that the

zeros of B(z) = 0 lie outside the unit circle, then one may write (2.21) as

'See Whittle [15,pp. 26-27].

II. .. . . .. . .



-14-

Fb -O sO

(2.23) aY

s=O

Express-,"on (2.24) has an intuitive appeal, for it implies that Xis

a linear combination of uncorrelatA :. identically distributed present

and paet events.

The number of coefficients in the b sequence remains to be con-

sidered. Suppose that

b =0 S > p>

so that

(2.25) bsXtl mYt

3-0

One would normally expect tha~t after some lag p, the contribution to

the behavior of X made by variables X Xwudb

negligible, so that (2.25) would adequately describe the relationship
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between X' and Y. This means that we can find a linear combination

of present and past values of X' that form a sequence Y of uncorrelated,

identically distributed events with mean zero and variance a
2

Using (2.25) leads to

m = a 2 A 2 ,

(2.26)

p

b =2bs

s=0

2

To esti.mate a and the coefficients in the b sequence, we apply the

linear least-squares method to a sample of observations on X using the

autoregressive representation (2.25). We can subsequently estimate

m by substituting estimates of a2 and the b 's into (2.26). The sample
S

variance of the sample mean is then m/N.

It is instructive to compare m with N Var(X,) to measure the ade-

quacy of the approximation. Suppose X has the autoregressive represen-

tation

(2.27) Xt" gXt-1 Y t -gi <1

so that
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R =o9I-Sl(lg2)

(2.28) N Var(XN) =11(1-g) 2 2g(l-gN)/[N( I+g)(1-g)3]

2
m=l/-g

Notice that the restriction Ig1 < 1 is equivalent to requiring

(2.29) B(z) =I- gz =0

to have its root outside ol the unit circle.

Figure 1 shows the ratio

(2.30) q - Vat0y/VN]'

for several values of g and varying sample sizes N. The square root

comparison is appropriate, for it is the standard deviation of the

sample mean that determines the width of a confidence interval f',.r

the population mean. Notice that for lgI < 0.50, the error of approxi-

mation is less tharn 5 percent for N > 25. For IS) = 0.95, the error

is abnut 10 percent for N - 100.

The error patterns differ noticeably for positive and negative

values of g. For positive valueb, a always overestimates N VrX)

for negative values, it always underestimates it. Also, N Var (XN)

oscillates when g < 0, the pattern being most apparent for small N.

From inspection of Fig. 1, it is clear that choosing an even value

of N improves the approximation.
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Suppose we write

r P

Z, = sX " . b X' + Ys -s s t-s t

s-0 s=r+l

(2.31)

b0 - 1;bs = O, > p,

so that

p p

(2.32) E(X'Z) =- b E(X; X' b~ ~b R

s=O s-0

Here Zt is a conditional random variable derived by removing the

li'near effects of X't.l , X' from X'. If r = p, then all che linear
t-l' -' t-r fo t-

effects of past events have been removed from X' so that
t

E(X 1 z ) - ot-p- 1t

(2.33)

b -0.

This result is important, for it gives us a way of determining

p, the order of the autoregressive representation. Suppose we esti-

mate the coefficients in R autoregressive schemes of orders 1, ... , R.

We then test the significance of the last estimated coefficient iLi

each scheme. By choosing R sufficiently large, we can find a vslue

p < R beyond which all remainin i last estimates are insignifica:tt.
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It is important to check a number of schemes for significance

rather than proceeding stepwise, successively testing the last esti-

mate, and stopping when the coefficient is Insignificant. It may

occur that a coefficient b for R < p vanishes. Proceeding in a step-rvise fashion would cause us to stop testing prematurely.
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3. STATISTICAL INFERENCE

Consider a set of N observations, Xl,. XN, that we wish to fit

to an autoregressive representation:

r

(3.1) b(x .- sP )  Y t

s-O

We first adjust for the sample mean,

(3.2) x' = X - X.

and then compute the sample autocovariances,

(3.3) C (1/N) 'xxt- - = 0, 1, ... ,
N,,r

t-l

The quantity R is the highest order of the autocegressive schemes that

we plan to test. Since we plan to compute estimates for schemes of

successively higher order, we use a tLme-conserving, recursive estima-

tion procedure suggested by Durbin [3], which Whittle also describes

[15, p. 37).
th

Let b be the s lagged estimated coefficient in the scheme
r+l ,s

of order r+l, and let

(3.4) b - I r 0 0, 1, ... , R-1.
r+1,0
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ch
Then from the r order scheme, where r 0, 1, ... , R-l, we compute

r

wr Zbr,s CN,s

s=O

(3.5)

b --,v~l = w /v

r

b -+I r +l , r +b b

br~is r,s r+1 ,r4l r,r-s+l

The sample residual variance that is an estimate of a
2 is

N

(3.6) a- = (N - r)E b (X - 2 r = O, . R- 1.I'l -
t=r+l s=O

Using a result based on Whittle [15, pp. 72-73], one may show that

for large N

var(b r,) wrIN

w = 1 -b 2

r r,r

If the confidence interval

(3.7) br, r _

covers zero, then we accept the hypothesis that b = 0. Th quantity

P is the point on the norrial curve corresponding to a significance level

o, where
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(3.8) (2x e2 /2dx I - 2

This method of determining p is based on the testing procedure

described by Jenkins and Watts in [8,pp. 189-2003. There the test

statistic has the Student t distribution butt, in the present context,

we assume N to be sufficiently large so that the normal approximation

is acceptable. Quenouille [13] has described an alternative and more

precise large sample "goodness of fit" test for autoregressive schemes.

Unfortunately, his test requires several more complicated computations

than those described above, and it does not appear to be easily in-

corporated into a simulation program.

Suppose that b is tested for significance for r - 1, ..., R,r,r

and that the coefficient b p.p p < R is significant, but the coeffi-

cients b are not significant for r - p + 1, ..., R. Then we chooser,r

the order of the scheme to be p and estimate a by

(39) 2f(E .) -
9-0

Three questions remain to be answered here. One is the choice

of R; the second, the choice of the Initial sample size; and the third,

the choice of a and thereby P. The larger is R, the better is the

chance of including the correct p within the schemes tested. But low-
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order autoregressive schemes often suffice to account for the auto-

correlation structure it, X and, consequently, choosing R to be 10 should

be more than adequate. In our work we have chosen R to be 4 and 5.

The steps that we have so far described are based on an initial

sample of N observations. For the normal approximation to be acceptable,

we require that N - R > 30 so that the initial sample size N exceeds

R + 30; how much greater -t should be depends on the cost of collecting

observations, a point to which we return in Sec. 6.

Earlier we spoke of testing the last coefficient in each of the R

autoregressive schemes estimated. We then have a multiple testing prob-

lem and, if we choose a significance level a for each test, the signi-

ficance level for the multiple test will ie greater than a. The greater

R is, the greater the divergence is between c and the significance level

for the multiple test. It is therefore recommended that the choice of

o be less than one would customarily use in testing a single hypothesis.

T.is divergence is also a good reason for keeping R small.
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4. RELIABILIT! CRITERIA

The purpose of the present research is to determine the sample

size needed to estimate the population mean with a specified accuracy

or reliability. Since we are treating the sample mean X as a normal

variate with approximate variance r/N, we specify reliability by means

of the confidence statement

(4.1) Pr(IX - u < Qqm!) 1-

where the confidence level A is a small probability such as 0.05 or

0.10, and Q is the normal point corresponding to

2
(2y-)-1 12 e-z /2dz - 3/2

We may also write (4.1) as

(4.2) r( NQi< &<'N + Q4/;-' 1

and we note that the larger is N, the shorter is the confidence interval

around L.

Suppose we wish to collect a sample size such that the variance of

the resulting sample mean is less than or equal to V with probability

1-8. That is,

(4.3) P4(X' - Q jV < 3 4~) 1
Todeterin , w notethe + 4') a

To determine V*t, we note the equivalence of (4.2) and (4.3) so that
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(4.4) -=MINe

(4. 5) N* - ri/V

If mi were known a Drixori, then the determination of N* in (4.5)

would follow directly. Since we only have an estimate A nf m, it is

natural to replace mi by mi in (4.5) and so estimate N'. As a first

approximation, this is a reasonable approach. Figure 2 shows a flow

chart or- an iterative proceduire for determining and collecting N* ob-

servations.

Notice that we collect N(N -N, not N' - N additional observa-

tions. This scaling increases the number of iterations, but, more

important, it decreases the total number of unnecessary observations

collected. Since the computer time saving will generally be much

greater with regard to the avoidance of collecting unnecessary obser-

vations than the tim expended on additional iterations, scaling is

desirable. In the exa'zples to be presented in Sec. 8, y was set equal

to 1/3 and 1/2 for comparison.

The specification of V is a statistically oriented constraint in

terms of populatiou parameters. Often we prefer a confidence statement

(4.6) Pr(X,- c< &L< XW + C)el

where c is a specified constant. Here we wish to determine a sample

size N* such that the probability is about I - a- that the difference

between the samsple and populacion means does not e-sceed * c. This

is an absolute reliabilit3 criterion to be cet. To determinc Wk,* we



-26-

>

P.4

e-o +

A I

>U

ItJ

-* 1,

gmC

cc ~



-27-

note that (4,2) and (4.6) are identical for

(4.7) C = Q4i ,

so that

(4.8) N* = m(Q/c)
2

And we note that the relationship between V and c is

V , (c/Q) 2

As an alternative, we may wish to determine N* such that

(4.9) Fr(X - c" < P < )N +--

so that the probability is I - B that the difference between the sample

and population ateans does not exceed + c.. Using (4.2) again, we have

(4.10) N- m(Q/c) 2 .

This is a relative reliability criterion. Notice in (4.8) and (4.10)

that halving c causes a fourfold increase in lk. Here m and 0 are un-

known, so we replace them in (4.10) by m and Y1

Both the absolute and relative criteria are being determined in

(4.8) and (4.10) using Q from the normal distribution. In the absolute

case we know from theoretical considerations that failure to account

for the substitution of m for ra makes Q smaller than it should be and,

therefore, causes an underestimate of Nk. For the relative case, the
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problem --s further compounded by the sbstitution of XN* for .

By drawing several analogies to the case of independent observa-

tions with unknown mean and variance, we can introduce a correct,--.n

factor for Q to account for the unknown m. This is done in the next

section.
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5. IMPROVED CONFIDENCE INTERVALS

The mean and variance of the process under study are IL and R0 , re-

spectively. Let us now consider a hypothetical process made up of in-

dependent events each with mean p and variance RO0 For L observations

the variance of the sample mean of the hypothetical process is R IL.

In the process under study it is m/N for lirge N. Equating these sample

mean variances, we have

(5.1) R%/L - m/N

so that, with regard to the sample mean variance,

(5.2) K N/L- m- R 

is the number of observations to be collected on the proceiss under study

that is equivalent to collecting one independent observation on the hy-

pothetical process.

Suppose we have an estimate C of R0 for the hypothetical process.

Men we use the t distribution with L - 1 degrees of freedom, together

with XL and C0 /L, to cempute a confidence interval for v. The use of

L - i instead of L is due to the substitution of XL for & in Co . In

the present study we may derive a more representative confidence interval

for u, by using the t distribution with XN, and C0/L with L - 1 equiva-

lent degrees ol freedom, where

(5.3) L , NIK - NRo/m
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the loss of one degree of freedom being for the sample mean substitution.

To estimate L, we replace r in (5.3) by m.

To incorporate a table of the appropriate critical values for the

t distribution into a computer program seems undesirable since this

would require a vslue for each number of degrees of freedom for each

8. Instead, we may use formulae for the asymptotic expansion of the

critical value of t around the critical value of the normal distribu-

tion ior a given 0. The interesting characteristic of the asymptotic

expansion is that it ,s a power series in inverse powers of the number

of degrees of freedom so that we may compute Q for a given 0 simply by

inserting tbe number of degrees of freedom in the formulae. These for-

mulae may be found in [14, p. 948].

It is to be noted that the use of the t distribution corrects for

unknown m. At the present stage of research no correction can be offered

for the unknown 1 in the relative reliability case. Nor is their any

adJusupent for the use of an estimate for L. To check on the extent of

degradation due to these omissions, our examples are based on the rela,-

tive reliability criterion.

iI
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6. BIAS ADJUSTENT

At the beginning of the simulation experiment, a number of vital

variables are assigned predetermined values to "prime" the system. This

procedure establishes a set of initial conditions and, because of the in-

herent dependence among events X,, the first observation on the process

of interest is a function of these initicl conditiors. The second ob-

servation X2 is also a function of these values but to a lesser extent

than X1 is. Successive observations are less dependent on the initial

conditions so that eventually events in the simulation experiment are

independent of them.

Because of their dependence on the initial conditions, observations

near the beginning of the experiment are not representative of the pro-

cess of interest and their inclusion in X makes this quantity a biased

estimator of the true miean &. As N becomes large, the bias goes to zero

since early observations become less influential on the average. But

for moderate N, the bias may be significant and should be reduced if

possible.

We noted that K in (5.2) essentially measures the number of auto-

correlated observations per independent observation. Intuitively, we

therefore expect the correlation between observations K units apart to

be low. For example, in the first-order process described earlier we have

(6.1) K - (1 + )(1 - g)

so that the correlation between the first and K + 1st observations is
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(6.2) g (l+g)/(1-g) < l/e .13534

As a first step toward reducing the influence of initial conditions,

we remove the first K observations from the sample. Then we have the

sample mean

N

(6.3) 1N, N-
t-K+l

with

/(2-K) = 2 22

(6.4) N a7!j(N-K~b j a /b _a /R

The confidence interval for L. is then computed using the t distribution

with L - 2 "equivalent" degrees of freedom and XNK and C0 /(L-1) , L

being estimated as before.

Figure 3 is a flow chart that illustrates one way of including

the bias adjustment. When the sample size is judged sufficient, the

s..ple mean is recomputed using the newly !stimaced bias adjustment K.

The estimates m and L are not recomputed, since our experience has shown

that a recomputation of these quantities makes little difference.
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7. EXAMPLES

This section presents four examples to illustrate how the pro-

posed technique works. The first three examples are zero-, first-

and second-order autoregressive schemes for normal stochastic sequences.

One-hundred re!lications were collected on each example to enable mean-

ingful comparisons for different significance levels a in determining

the order p of tae autoregressive schemes and for different values of

y, the scale factor used in collecting additional observations. The

fourth example is a first-come, first-served single-server queueing prob-

lem with independent an- exponentially distributed interarrival and

service times. The purpose of this example is to szAdy a problem more

closely akin t:c those usually analyzed in discrete event simulation

experiments and also one in which the underlying distributions are not

normal. An.alytical solutions are available for all four examples and

serve as a check on the technique. The computer program was written

in the SINSCRIPT II programming language [101.

In the first example w.e considered a stochastic sequence where

(7.1) Xt =0.5 + Y

Y being normal with

E(Yd 0

(7.2)

f 1 t s

E(Y Y)-
t tst!
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Then

(7.3) 
(xd - ,,.5,

and for a sample of N observations,

(7.4) Var(,V - 1IN

in the second example we considered a first-order scheme

(7.5) X -O.SX +.5+y
t t-1 + 5+

so that

(7.6) E(X) = L

va , 4!N

And for the third example we studied a second-order scheme,

Xt -5XtI - -25Xt-2 + 0-5 + yt

'7.7) E(:Ct ) = =2/3,

Var(XY) A." 6I(9N)

The quantities Var(XN) were computed using (2.26). The coefficients in
the second-order scheme vere chosen to ill1astrate how a hIgher-order

sut.cregressLve representation does not necessarily imply more auto-
correlation in the sequence and, hence, a larger Var(Yt.

XN)
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The objective in all three examples was to obtain sample( sizes

N such that

P r( 1 - ! < C;J) - -

(7.8) c = 0.20

=0.10

Using (4.5), the required sample size for each exanple was

* 2
(7.9) N = (16.4) - 269

so that the respective sample mean variances were

Var(Xd 0.003717 .

(7.10) Var(XN ) 0.014870

Var(XN*) 0.006609

For each example, two significance levels for determining the auto-

regressive order were studied. They were C = 0.025 and n - 0.05. Also'

two scaling factors were examined for determining the number of addi-

tional observations to be collected. They are y 0.5 and v = 0.3333.

Therefore each example contained four cases.

The results fo- the total of twelve cases, each containing i0-

independent replications, are presented in Table 1, were
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p S order c-f the autoregressive scheme (Sec. 2)

* significance point in test to determine p (Sec. 3)

* S weighting factor for newly computed required sample size (Sec. 5)

V" = approxbimation to variance of sample ean (Sec. 2)

In all experiments, V was close to Var(X.).

Colu= 4 lists the average required s..mple size computed on the

last iteration of each experiment. Colu=n 5 lists the average sample

size collected on the last iteration, which is naturally greater than

the corresponding quantity in cc!. 4 since it is precisely this cond:-

tion that terminates the experiment. The quantities -n parentheses are

the sample stendard deviations. The highest order autoregressive scheme

R considered was 4.

Notice that increasing a from 0.025 to 0.05 causer- slightly less

than a doubling in col. 8 !or p = 0. A less marked increase occurs

for p = 1, 2. Also note-icrthy is the general increase in col. 8 for

a given or as p increases. These increases would be, in fact, larger

if R were greater since more tests would be performed. Since we ex-

pect p > 0, it is advisable to make a small and also tc restrict R.

The choices of a - 0.025 and R 1 4 appear to be acceptable operating

c.n4itions in the cases described.

Ihen -y is reduced from 0.5 to 0.333, the excess sample size (col. 6)

becomes smaller. Copared with the theoretical M of 269, the use of

= 0.5 causes an average of 1.1746 observations to be collected for

every required obser-ation, whereas the use of a = 0.3333 requires an
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Table I

TEST RESLLUS FOR 100 ,EPLICATION
(Tieore.ical N -269)

Average_______

(I) (2) (3) (4) (6) (7) (8) (9,
"robabi litvi

FinAl N Final N Final No. 0! Choosing p .ample The t -

o "p (Required) (Collected) N-N Iterations :ncorrectly V"

0,025 0.5000 277 323 46 I 4.21 0.0546 C.003448
(85.0) (14S.3)

0.3333 269 275 6 6.27 I 0.0622 .00377!
(-7 9) (96.8) i I

0.05 0.5000 268 313 45 j 4.25 O.109 0.003593
(92.2) (181.6) I

0.333 269 283 14 b.48 0. ib5 0 003604
(78.7) (100.5) ____ ___

0.025 0.5000 259 301 42 j 4.12 0. 533 .01396 . 2
i (163.7) 1 .

(107.1) -Ii
0.3333 245 263 18 5.66 0.1555 0.014843

103.4 (132.8)

0.05 0.5000 254 310 56 4.0) 0.1845 '13941
(108.7) (195.2) I

0.333 247 260 13 5.39 O.355 .0:.90,
(104.7) (127.2) I

2 0.025 0.5000 265 335 70 3.98 0.2136 0.005981 0.Oho29
(94.4) (197.2)

0.3333 264 287 23 5.62 0.!904 0.006505
(100.5) (136.6) 0

0.05 0.5000 260 312 53 3.63 0.2342 0.006169S (97.4)1 (177.5)

0.3333 264 277 1., 5.50 0.1636 IC.00651.6
(87.2) k112.0) j
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average of 1.0195 observations. The sample standard deviations in

col. 5 are also smaller for y - 0.3333, but the average number of

iterations (col. 7) is notably increased. Moreover, 27 percent more

CPU time is required fot y - 0.3333. These facts suggest that smaller

y's improve statistical precision but require more CPU time. We now

study the cost of this improved precision.

The actual generation of data used in these experiments consumed

relatively little CPU time so that we may reasonably attribute the

total CPU time to the proposed statistical technique. For y - 0.5,

the program processed 274 observations per second; for y - 0.3333, it

processed 187 observations per second. In all experiments summarized

in Table 1, tha dati were retained in the magnetic core storage unit.

Suppose we theoretically require a sample of 10,000 observations.

For y - 0.5 this would result in the collection of 11,746 observations,

by the processing times per observation, we note that 42.9 and 54.2

seconds are con3uwrd when Y - 0.5 and Y - 0.3333, respectively. Com-

pared to the time c_.uiumed in most simulation experimer.ts, this dif-

ference for the two values of y is negligible.

The fourth example is a single-server queueing problem with In-

dependent and exponentially distributed interarrivaI and service times

aad a first-come, first-served queueing dLscipline. The mean inter-

arriv and service times are X - 0.25 and )2 ' 0.225, respectively,

so that the activity level is

(7.11) p .- 2 A 0.9
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From theory we know that the mean queue length is

(7.12) = p/(I - P) 9

and its variance is

2

(7.13) R°  p1(1 - p) 90

Using the results of [5 and 12], the variance of the sample mean de-

rived from cbserving queue length for a time interval (0, T) is for

large T

(7.14) Var (X.r) -p(l + p)A1[(l - p) 4 T] - 3847.5/T

where T is measured in the same time units as A, and X

We recorded queue length at N - T unit intervals. Since some

variation is eliminated by this discrete sampling, we may regard

3847.5/N as an upper bound on the variance of X the resulting sam-

ple mean.

As a reliability criterion we chose

(7.15) Pr (IN* - VI < cv) 1-

where

(7.16) c .3

- .10

Then using (4.5), the upper bound on N* was 1420. Three sets of rep-

lications were run, each with
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(7.17) a 0.025

X 0.3333

R-5 .

R was chosen to emphasize that it need not be fixed at 4 as in the

previous examples. The initial sample size in the first set was

M - 250, in the second M - 500, and in the third M - 1000.

The relevant sample averages are presented in Table 2. Two ten-

dencies are noteworthy. The first is the constant underestimation of

the confidence interval width. This is no doubt partially due to the

use of sampling theory appropriate for an absolute reliability criter-

ion with a relative criterion. The second point is the improved es-

timate of zample size as the initial sample size gets larger. Clearly

the choice of initial sample size makes a difference in the final re-

sult.

Table 2

AVERAGES FOR QUEUEING PROBLEM

Sample

Theoretical M=250 M=500 M-I100

Mean 9 8.21 .15 8.83
Lower confidence point 6.3 5.86 5.89 6.41
Upper confidence point 11.7 10.56 10.42 11.22
Interval width 5.4 4.70 4.53 4.81
Variance of sample mean 2.71 2.10 1.90 2.37
Final sample size 1462a 1068 1299 1473
Equivalent degrees of freedom 32 28 33 30
Bias adjustment 43 32 37 46

a
Includes bias adjustment.

IJ
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To measure the overail adequacy of the suggested procedure, we

studied the number of times that he generated confidence intervals

included the true mean of 9. These results are presented in Table 3,

where they are dichotcmized by replications that terminated after at

most one iteration and by those that did not. That is, if the experi-

ment terminated on the first statistical analysis, then no iterations

occurred.

Table 3

CONFIDENCE INTERVALS FOR OUEING PROBLEM

Include Mean Sample

Divided by

M Iterations Replications Sample Expected Expected

250 < 1 29 8 26.1 0.31
> . 71 58 63.9 0.81"
Total 100 66 90 0 0.73

500 < 1 36 15 3Z-.4 0.46
> 1 64 56 57.b 0.97
Total 100 71 90.0 0.79

1,000 < 1 54 36 48.6 0.74
> 1 46 43 41.4 1.04
Total 100 79 90.0 0.88

250 Modified 28 18 25.2 0.71
Normal 72 57 64.8 0.88

Total 100 .5 90.0 0.83

Since 0 - 0.1, we expect the confidence interval to include the

mean in 90 percent of the replicationg. The last column shows the

ratio of actual to expected inclusions. Notice that for zero or one

Iteration the results are considerably poorer than for greater than

one iteration. As the initial sample size increases, there is clear

improvement in the results for zero or one iteration as well as for

the remaining category.
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A priori we generally have little knowledge of what an appropri-

ate sample size is for the experiment to be undertaken. Therefore we

should be suspicious of results generated by zero or one iteration

since early termination implies that our initial guess is close to the

correct answer, a remcte possibility.

One way to guard against premature stopping is to require a mini-

mum of two iterations per experiment. To test the effect of this con-

straint, we performed the one-hundred replications again with M - 250,

with the added requirement that if any experiment terminated with

N - K useful observations on the zeroth or first iteration we added

N - K to the required sample size and continued the experiment. The

results are shown in the last three rows of Table 3 and are to be con-

pared with the corresponding first three rows. Note the significant

improvement in experiments that formerly requird less than two iter-

ations. It is clear that anad hoc rule such as the one Just described

improves the statistical properties of the experimental results.

As Table 3 shows, the percentage of confr.dence intervals that

include the mean generally falls below that e:cpected from theory. A-

part from premature stopping, we attribute this difference partially

to the use of a relative criterion with a distribution theory for ab-

solute criterion, and to the approximation involved in using theory

developed for independent observations for autocorrelated ones.
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One retaining and no doubt crucial consideration Is the assump-

tion of normality of . e have used it because it is intuitively

plausible and convenient. It is therefore instructive to study the

sample size problem without this assumption to understand the advan-

tages of the normality assumption. Using Che.byshev's Inequality, we

have in the present setting

2
(7.18) Pr (k/., - / kVm) > 1 - 1/k

For the queueing problem we have

c.. - kv/n - 2.7

(7.19) m - 3847.5

N= 1420 ,

so that

1/k 2 - 0.3704
(2.7 N*

(7.20)

Pr (IXN*- RN :S 2.7) > 0.6296

This means that, regardless of the distribution of XN*, the probabil-

ity is at least 0.6296 that deviations from the mean are no greater

than ± 2.7. Our results in Table 3 are clearly better than this low

botdary.
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Suppose we wish to make no distributional assumption about X-

and to use Chebyshev's Inequality to determine the required sample

size N* for 1 - 1/k2 - 0.90. Then

2
k " 10

so that

(! ,- Ij < 2.7) > 0.9

2 2
(7.21) k 2/N *  (2.7)

Sk2 m , (10)(3847.5) - 5278

(2.7)
2  (2.7)

2

Therefore, -e require an additional (5278-1420) - 3858 observationR

to meet the prubability requirement. In general, the use of Chebyshev's

Inequality is a luxury that most users prefer to forego, given the in-

tuitive plausibility of the normality assumption.
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8. THE MINIMUM VARIANCE ESTIMATOR

In Sec. 6, a knowledge of the autoregressive coefficients

;b ; s = 0, .... p3 enabled us to reduce the bias in the sample means

X . It is only natural to inquire whether or not a knowledge of these

coefficients can enable us to derire an esrimator of the populaLion

mean that has smaller -arLance than X has for a given sample size

N. The answer is yes and it is, in fact, possible to derive the mini-

mum variance estimator, whic- we da here. To develop the idea, we

neglect the bias due to initial conditions and correct for it later.

Consider the mean estimator

N

(8.1) XN;. =E t

such that

N

(8.2) E at: I
t=l

Then

E(X) =

(8.3)

Var(XN) R
s St s-l

sitt
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We caefine the lxN vector of weights,

(8.4a) = .. e)

and the NON autocovariance matrix,

(3.4b) N

so that

(8.4c) Var(3r) -EZ

An array of the form (8.4b) is called a Toeplitz matrix and has a

number of desirable prooerties, one of which will benefit us shortly.

We desire to choose 0 to minimize Lhe variance (8.4c] subject

to the condition (8.2) . The weights are then

(8.5) M%-Z

where X 13 a IXN vector of ones. Then.
;-N

(8.6) Var(XN) =l(



The weights are tun-Ctions oi the inverse of . and, at first

glance, one might expec:- this array to be beyond us unless we know

all N autocovariances in (8.4b). Luckily, a knowledge of the auto-

regressive coefficients tb; s = 0 ..... p} and the residual variance

2 jk
z suffices to derive Z-, Let : be the element of the inverse in

row j + I and column k + 1. Using a result of Whittle f, p.73J,

one r-.a" sl.cw that

_jk I 2) = .(b. b. b j k = 0, N - I
__ o J-r K-r r+N-j r- - k

-=0

(8.7)

b = 0 r < 0, r> p.r

Then the weights are

k p

k+I  
9N =1 bs/[ (N - 2s)bsJ k 0, ... , p - I

s=O s=O

(8.8)

P

= b/ -(N - 2s)b k p, ... N -p
k+l -E s

assuming that N > 2p + i. The variance is then

p

(8.9) Var( = (N - 2 sb
s=0



At least three points deserve ention. First we note that

2 2
(8.10) Mi N var() = /b

st that X ;.he coiventional estimator, is asymptotically minimum var-

iance. ore important, ho.rever, is the seccnd observation that (8.9)

is an exact for _ila for the variance in contrast -o using the limit

(Nb_)7 for X. The third point is that for a scheme of order p, observa-

tions p,...,. - p receive ea'ual weight so that the effect of autocor-

relation is felt at the ends of -he tie series.

To compare X. ani 7h. a furthe- exa .le is helpful. Consider the

first-order autoregressive scheme (2.33) again. We have

I ( g) 2g',

(8.11) 9k  (I g)/2N(- g) + 2gI k = , -, - I

Var(%) = lIN(l - g) + 2g(l - g)--

Notice that for 0 < g < 1 the first and last observations receih, the

largest weights. Since the ficst observation is subject to the

greatest bias from the initial conditions, it is important to remove

this bias when the minimum variance estimator is used. By contrast,

we note that far -1 < g < 0, the first and last observations receive

less weight than the remaining observations.

Let N be the required sample size ftor a specified reliability

using (2 .5a), and let NI be the required sample size using (8.1)
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1.4-
N g .99

1.2

g = .95

1.00 100 200 300 400 500
N

Fig. 4--Compariaon of X and XN for first-order autoregressive schemes

Figure 4 shows N/N for values of N, and g - 0.95, 0.99. For g - 0.95,

the advantage of X is most outstanding for sample sizes of less than

100. The desirability of N therefore is most apparent when high unit

collect~on costs require a limit on the sample size. Perhaps more im-

portant is the fact that the expression for the variance is known ex-

actly for any order scheme.

The bias adjustment can be introduced here simply by discarding

the first K observations and using (8.1), with N replaced everywhere

by N - K, provided that N - K > 2p + 1. The new mean estimator is

then

N-K

(8.12) XNK "E8tXt+K

t=l

with variance

P

(8.13) Var( N , K) y a2 /[ba(N - K - 2s)b .

s-0

It.!
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Suppose that it is desired to compute N satisfying the absolute

reliability criterion (4.1). Using (7.9) we have

p

(8.14) N - m(Qlc)2 + (2/b) sb
s 

If the relative criterion (4.9) is used, we have

p

(8.15) N - m[QI(c)3 2 + (2/b) Fsb s

s-O

If the only specification is that the variLnices be less than or equal

to V, then

(8.16) N m/V + (2/b) Sb
s-C

This is the criterion shown in the fl]v chart in Fig. 5 with the bias

correction. It will be helpful to note, when computing the 0K's, that

ff K+ ,= N W el
[, VK+l •

(8.17) 
=  """+ ' k -, p - I,

K+1+k a K+p  k - p, N - P

i - I /[ (N - 2s)bs]

R-0
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9. CONCLUSIONS

This Memoranoum has presented a number of idea& which, when taken

together, enable the user to derive results from his simulatinr experi-

ment with a specified accuracy. Moreover, the results are obtainable

without user interactions with the ongoing experiment.

In contrast to the spectral approach [5,6], which often requires

the computation of a large number of autocovariances to estimate the

variance of the sample mean, the suggested autoregressive approach re-

quires R sample autocovariances where R need not exceed 4 or 5. The

autoregressive approach also supplies more objective estimates of the

equivalent degrees of freedom that in turn permit the computation of

confidence intervals explicitly acknowledging tha estimated variance

of the same mean. The ability to correct for bias due to initLai con-

ditions is also noteworthy.

The Memorandum has dealt with the problem of determining size for

estimating the mean. An ancillary problem that deserves attention is

how to estimate the mean effioisntZy. To this end, Sec. 8 has described

the minimum variance unbiased estimator, which turns out to be a func-

tion of the autoregressive coefficients. No doubt such results will

interest thos concerned with variance reduction techniques.

The flow charts provide procedural assistance for implementing

the technique described. The omission of an example using the miimum

variance estimator is deliberate, since we prefer to learn more about

the resulting sampling properties before using it extensively.
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